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Abstract

The Next Generation (NextGen) Air Transportation System and the
Single European Sky ATM Research (SESAR) programs aim to overhaul
and modernize the existing air transportation systems in the United
States and Europe, respectively. The NextGen and SESAR concepts of
operation leverage procedures based on the Global Positioning System
and modern aircraft avionics to increase the predictability and reliability
of air transportation. Air Traffic Operations (ATO) that depend on
GPS-based procedures are referred to as Precision Air Traffic Operations
(PATO). Such operations, although modeled deterministically in prior
work, remain subject to a number of uncertainties present in the current
system, the foremost of which is error in the forecast winds aloft. As
a first step toward scheduling PATO in a stochastic environment, this
paper proposes a precise definition of the stability of a given PATO
schedule and a quantitative definition of the dissimilarity between two
such schedules. These metrics are aimed at recognizing those schedules
and changes to a schedule that may compromise the robustness of the
PATO; for example, leading to a loss of aircraft separation or of required
performance.

1 Introduction

NextGen and SESAR are envisioned to introduce widespread use of GPS-
based procedures called Area Navigation (RNAV) and Required Naviga-
tion Performance (RNP) [1]. RNAV and RNP procedures are expected
to increase the predictability of aircraft trajectories and allow for more
strategic application of control strategies for keeping aircraft safely sep-
arated and expediting progress toward their destination. However, the
envisioned predictability and efficiency increases depend on aircraft to
follow the prescribed RNAV and RNP procedures. Such operations de-
pending on adherence to precisely defined routes of flight are hereafter
called Precision Air Traffic Operations (PATO).

The problem of PATO scheduling and its constraints are described
in [2]. (Throughout the rest of this paper, the term schedule will, in de-
viation from the common use, refer to a vector-valued function of time,
defined in detail in a later section.) The mechanisms to be used by
air traffic control to separate aircraft conducting PATO are a subject
of current research [3]. However, regardless of the specific form of de-
cision support provided to air traffic controllers and flight crews in the
conduct of PATO, abrupt, frequent or ill-timed schedule changes can dis-
rupt other PATO functions (e.g. providing separation between aircraft).
Such disruptions may compromise safety and will likely be deemed un-
acceptable by those responsible for the execution of the schedule (i.e.,
air traffic controllers and aircraft flight crews). Whatever the form of



decision support, the response of the PATO system to the operational
uncertainties (which are described in [2]) will generally entail changes
to the schedule. Therefore, to prevent aforementioned disruptions, these
schedule changes must allow the air traffic control (whether human or
automated) and the pilot sufficient time to react.

The purpose of this paper is to propose a quantitative measure of the
response (manifested as a schedule change) of a PATO system to pertur-
bations arising from the operational uncertainties (described in [2] and
modeled here as stochastic perturbations to appropriate input parame-
ters!). The primary contribution of this paper is a dissimilarity metric
for an identically-routed schedule pair that allows for consideration of
robustness in scheduling PATO. This capability is needed to prevent in-
herent ATO uncertainties (e.g. wind forecast errors) from causing the
aforementioned disruptions. The dissimilarity metric proposed in this
paper will allow for consideration of schedule robustness in two ways:

e as a cost in the objective function of a PATO schedule optimization,
and

e as a measure of a given schedule’s sensitivity to the inherent un-
certainties.

The computational cost of the methods used to determine a PATO sched-
ule will determine how the proposed metric is used in future ATO de-
cision support or automation. Given sufficient time and computational
capabilities, an optimal PATO schedule solution can be sought with an
objective function that reflects schedule robustness and operational pri-
orities (e.g. runway utilization and flight efficiency). Lacking sufficient
computational resources for such an optimization, a given schedule can
be evaluated to determine its sensitivity to inherent ATO uncertainties
and if the sensitivity of a schedule exceeds a prescribed maximum sensi-
tivity, the traffic demand (input) adjusted accordingly as a precautionary
measure.

The contributions of this paper and the potential future use of the
work herein are best understood with knowledge of the PATO scheduling
problem and exposure to the prior work in scheduling (current) ATO
and its relevance to PATO. A thorough description of the problem of
scheduling for PATO is included in [2], and a brief review of the formal
problem statement is provided in the following section along with a brief
review of prior research into robust scheduling for PATO. The remainder
of this paper is organized to first develop a definition for dissimilarity
between two PATO schedules and then to provide concise numerical
examples to demonstrate the potential utility of the proposed metric
toward robust NextGen PATO. Lastly, because there will be situations in
NextGen, where aircraft will require paths different from those prescribed

!The stochasticity of an input parameter here is a modeling assumption that may
be difficult to test for some parameters and false altogether for others.



in a schedule, we present an extension to the proposed metric which
addresses the case of non identically-routed schedules.

2 Background

This section provides a formal statement of the PATO problem and brief
discussion of previous research into robust scheduling of PATO.

2.1 Scheduling PATO: problem statement

Derivation of the PATO scheduling problem definition and the enumer-
ation of the constraints on PATO scheduling are included in [2]. One
seeks to route and navigate along the chosen routes a finite set

A=1{1,2,..., A}

of A flights in a route network, each flight o € A to go from its ori-
gin to its destination, both specified as an input to the problem. The
route network is modeled as a directed graph, or digraph [4, section A.2],
G = (V,E). The vertices v € V are points in a Euclidean space of di-
mension 2 or 3, which models the physical airspace, and correspond to
waypoints [2] and runways in the airspace. To each edge e = (u,v) € E
corresponds a rectifiable curve [5, section 4.6-9] which, therefore, has a
well-defined arc length. Henceforth, an edge e € E will be identified
with the corresponding curve. A graph G = (V, E) with this additional
geometric setting will be called an airspace graph.

Each aircraft is modeled as a point moving along an edge of G. Thus,
to each aircraft o we associate a path in the graph G. Such a path, be-
ing a concatenation of continuous and piecewise differentiable curves, is
itself such a curve. Once an arc length coordinate s(® is introduced on
this curve for aircraft «, the value of this coordinate at time ¢ completely
specifies the physical position of agent « at time t. It follows immediately
that the time derivative of s(®)(t) gives the agent’s instantaneous ground
speed along its path. The formal problem statement is as follows [2]:

Given
e for each a € A a path (parameterized by arc length s ) in G,

e the full set of constraints (e.g. separation minima) on the (@) (t)’s
and on their time derivatives (e.g. airspeed restrictions),

e a control dynamical law for the evolution of the s(®) (t)’s, and

e an objective function of the vector-valued function (s (t))aca of
time,



find a control strategy [6] that results in a (5(*)(t))qea which is feasi-
ble [4,6] (i.e., constraint-compliant) and, if needed, minimizes the objec-
tive function.

Solutions to this problem have been proposed in [7] and [8] and ex-
tended to include the case of multiple possible aircraft routings in [9].

2.2 Prior ATO schedule robustness research

Because PATO is a relatively new concept, with prior ATO being subject
to ad hoc maneuvering of aircraft as instructed by Air Traffic Control
(ATC), only a small body of research exists regarding robust scheduling
of aircraft on a priori defined paths. Research into robustness of ATO
is mostly limited to the fields of airline crew and equipment scheduling,
and Air Traffic Flow Management (ATFM). Chandran and Balakrish-
nan [10] investigated the tradeoff between arrival runway utilization and
probability of a feasible solution relative to the First Come First Served
(FCFS) schedule of operations. These authors demonstrated that, for a
given scheduling algorithm, the relative probability of a feasible solution
decreased as the scheduled runway utilization increased. The model of
uncertainty in [10] was intentionally simplistic and only a handful of the
problem constraints identified by [2] were considered.

3 Schedule stability and PATO robustness

A quantitative characterization of robustness for PATO is desired for two
purposes, which are long-term research goals: to gauge the sensitivity of
a proposed schedule to known stochastic perturbations in the inputs,
and to allow for schedule optimization that includes robustness consid-
erations. As stated in section 1, for PATO to be robust (i.e. to perform
without failure and as intended across a wide range of conditions), the
schedule changes made in response to operational uncertainties must (i)
be free of effects that can disrupt other PATO functions, and (i) allow
the ATC and the pilots sufficient time to execute the newly provided
schedule. We propose to approach this by characterizing such schedule
changes and execution urgency quantitatively. The rest of this section
is a development of the mathematical machinery for such a characteri-
zation.

3.1 Parameter-dependent schedules

As was noted in section 2.1, a schedule is a double datum, prescribed for
a given set of aircraft to travel in a given route network, of the form

o = (routing, collective control strategy), (1)



where the routing refers to a function mapping each aircraft & € A in
the given operation to a path in the route network, and the collective
control strategy is a vector
_ (e

u(t) = (V@)
that prescribes the motion for all aircraft simultaneously, with the u(®)’s
being the control variables in the state equations [5, section 11.8-1(a)] of
this motion. If inertia is neglected in the model provided by the state
equations, then the u(®’s are typically the speeds; otherwise, if inertia is
included, the u(®)’s are typically the accelerations, while the speeds and
the arc length coordinates of the aircraft are the state variables. The
theory developed in this paper is applicable to both cases, and in both
cases rests on the following assumption.

Assumption 3.1. The speeds appearing, whether as state variables or
as control variables, in the state equations and in the rest of the model
are the true air speeds.

One consequence of this assumption is that one cannot, without
knowing the wind field, calculate the ground speeds and flight times
of the aircraft.

Both constituent components of a schedule (1), the routing and the
control strategy, are functions of a parameter that takes values in some
parameter space P (e.g., a suitable class of wind vector fields on the given
airspace), which is a subset of a vector space with some norm [5, section
14.2-5], denoted || - ||. If a schedule o corresponds to a parameter value
p € P, this correspondence will sometimes be made explicit using the
notation

o =0o(p)

As previously stated, schedule changes must not disrupt other PATO
functions. Intuitively, we will consider a schedule stable at a given pa-
rameter value p (or, briefly, stable at p) if by small perturbations to p one
cannot with high probability cause “large changes in the schedule (i.e.
schedule changes that disrupt other PATO functions). A mathematical
model of this intuition requires, in particular, a function that measures
the dissimilarity between a pair of schedules. A general class of such
functions is constructed below, in section 3.2, and has the behavior of
what is called in mathematics a metric or a distance function [5, defini-
tion 12-5.2].

3.2 Definition of dissimilarity for identically routed sched-
ule pairs

In this section, we define quantitatively the dissimilarity between two
solutions, o1 and o9, to the PATO scheduling problem [2]. The following
definition will be instrumental to this discussion.



Definition 3.1. (a) Two schedules that have the same route network,
aircraft set A, and separation and speed constraints, and differ only in
the parameter value, will be called a schedule pair. (b) A schedule pair
with the same routing is said to be identically routed.

In this paper, we consider those schedule pairs that are identically
routed. A generalization to the case when a perturbation to the param-
eter changes the routing, discussed briefly in Section 5 below, is a topic
for future research.

The intuition for the definition of dissimilarity is as follows. An iden-
tically routed schedule pair will be thought the more dissimilar, the more
“substantial” the operational change from one to the other. A change
in the speed advisory v(® for an individual aircraft « is considered the
more “substantial”? the greater the volume of instructions is to be issued
by the ATC and executed by the pilot. Thus, at each point s along the
aircraft’s path, the qualitative form of the “instantaneous dissimiliarity”
between the two speed advisories v(71:%)(s), v(72:%) () furnished for a by
the two respective schedules o1, 02 has the qualitative form

( the absolute difference between v(71:)(s) and v(72:%)(s) ) . (2

Once a mathematical definition for (2) is stated, the individual, for
aircraft o, dissimilarity between o1 and o9 can be defined as the integral
of (2) with respect to the arc length coordinate of the flight path of «,
taken along the entire path. The dissimilarity d(oj,02) (total, for the
entire operation) between schedules o1 and o9 will be defined as the
summation over all « of the these integrals.

The quantity in (2) can be defined as a suitable continuous and non-
decreasing function of the absolute difference

[0 (5) — o725 (s)].

To guarantee certain smoothness, this function will be chosen as one that
squares its argument. Finally, the arc length coordinate along the path
of aircraft o varies from a value denoted s(FNT:®) (entrance) to a value
denoted a value denoted s(FXIT5) (exit).

The resulting definition of the dissimilarity of an identically routed
schedule pair 01,09 is

S(EXIT;a)

d(o1,02) = Z {/S(ENT;G) [v(ene)(s) — U(GQ;Q)(S)]Q ds} )

«

It can be proved that, on a class of schedules where each two form a
schedule pair (see definition 3.1, above) and are identically routed, the

2Ie., requiring a more substantial or labor-intensive revision of the entire operation
in question.



dissimilarity function d(-,-) is a metric in the sense of [5, definition 12-
5.2]3, and will be used in the definition of schedule stability (see Section
3.4.1).

3.3 Numerical examples of pairwise dissimilarities in a set
of schedules

3.3.1 Two schedules for two aircraft whose rectilinear paths
cross perpendicularly

Setting In the route network shown in Figure 1.A, consider two air-
craft, « = 1 and a = 2, flying the respective routes (WP0.1, WP2,
WP1.1), due East, and (WP0.2, WP2, WP1.2), due north:

o route
1 (WPO.l, WP2, WPl.l) (4)
2 (WPO.2, WP2, WP1.2)

WP1.2

WPO0.1 (s! = —49)

Figure 1. (A) A physical airspace with two rectilinear paths, crossing
perpendicularly and each traversed by an aircraft. Each point on a path
corresponds to a possible position of one aircraft. (B) The set of all
separation-losing states in the s!s2-coordinate space. Each point, (s!, s?),
describes the positions of both aircraft simultaneously. The shaded inte-
rior of the circle depicts the set of all states in which the requirement for
a minimal separation of 5 nm is violated.

The routes are rectilinear and mutually perpendicular segments, each
parameterized by the respective arc length coordinate s(®, o € {1,2},

3In other mathematical literature, the term used for the concept defined in [5,
definition 12-5.2] is pseudometric, while a metric is defined by adding to the latter
definition the requirement that if d is zero for a pair of arguments, then the arguments
coincide; see, for example, Reference [11, section 1.21a].



as shown in Figure 1.A. Assume the required separation for the two
aircraft, regardless of relative position, is 5 nm.

The coordinate space for this air traffic model is the set of all pairs
(s',s%) with s* > —49, s> > —50, with the crossing point, WP2, at the
origin: s! = s? = 0. The set of all coordinate pairs (s!,s?) that have
the two aircraft within 5 nm of each other, i.e. that lose separation, is
shown in Figure 1.B) as the shaded interior of a circle centered at the
origin and with radius 5; for detailed derivations, see [7,9].

Suppose that the aircraft are initially at WP0.1 (s} = —49) nm and
WP0.2 (s3 = —50) nm, respectively, i.e. are in the initial state

S0 = (‘9(1)7 5(2)) = (_497 _50)
in the s's?-coordinate space, and impose the following feasible speed
range constraint:

Each aircraft has minimal feasible airspeed V™" = 420 kts and
maximal feasible airspeed V™#* = 475 kts.

()

Zero wind conditions, schedule o1: In the absence of wind, the
airspeeds coincide with the ground speeds, so constraint (5) implies that
all states reachable from sg lie in the cone with vertex sy and bounded
by the lines

o2 V™ a o 2 V™
5% —s5 = . (s —so) and S—SOZVmaX(S —so)

This cone is schematically shown, shaded, in Figure 2.A. The Figure
illustrates the following fact, which can be verified by computation: if
the two aircraft are to maintain separation at all times while passing
WP2, then @ = 1 must travel at maximal speed, V™% while a = 2
must travel at minimal speed V™", This assignment of speeds, together
with routing (4), is a schedule, which we will denote in this section by
g1.

A constant positive northwest wind, schedule oo: Suppose now
the presence of a wind field, constantly 12 kts due northwest. Since
an aircraft will be kept, by its navigational system, on the flight path,
only those components of the wind tangential to the path will affect
an aircraft’s movement. Consequently, the resulting ranges of feasible
speeds, in reference to ground, for the two aircraft are then given by

Vit — Vit 12sin(r/4), Vet = VI 12sin(r/4),

Vouni2 = Vit 4 12sin(7/4), Vg™ = VU 4+ 12sin(r/4)



slope Vmin/vmax

(A) (B)

Figure 2. A schematic drawing, not to scale. In both panels, the solid
line through sg is the diagonal s' — s} = s? — s3. (A) The cone (shaded)
of all states reachable from sg in the absence of wind is symmetric with
respect to the diagonal. The only speed advisory that avoids a loss of
separation is to have aircraft 1 and 2 to go constantly at speeds V™2 and
Vminregpectively (the line with slope V™R /V™M8X through sg). (B) The
cone (dashed boundary) of all states reachable from sj in the presence of
a constant 12 kts wind northwest. Due to the wind’s effect on each air-
craft’s groundspeed (reduced for aircraft 1 and increased for aircraft 2),
the cone lacks diagonal symmetry. The only speed advisory that avoids
a loss of separation is to have aircraft 1 and 2 progress constantly at
ground speeds V;?m?l and Vg‘?axﬂ, respectively (ground-referenced values
listed in (6)).



which have the following approximate values:

a V(min;a) V(max;a)
1 41152  466.52 (6)
2 42849  483.49

As is illustrated in Figure 2.B (and can be verified numerically), the
only speed advisory that avoids a loss of separation is to have aircraft 1
and 2 to go constantly at ground speeds V™l and V™3%2 respectively
(values listed in (6)). This schedule will be denoted by 2. In terms
of airspeeds, oy prescribes that aircraft 1 and 2 go at speeds V™™ and
Vmax - respectively.

Dissimilarity between o1 and o, The dissimilarity (3) between the
two schedules is, therefore,

0 0
\// [Vmax _ {/min]2 ggl 4 / [Vmin — ymax]2 ds2 = 547.24  (7)
—49 ~50

Figure 2.A shows that any increase, however slight, in the slopes of
the lines that bound the shaded cone will make the speed advisory in
o1 impossible to execute without losing separation. Consequently, the
following observation (used below) holds for this example:

Remark 3.1. With a constant wind northwest, of a magnitude strictly
between 0 kts and 12 kts (see Figure 2B), schedule o1 is infeasible.

3.3.2 Three schedules for two aircraft on a simple route net-
work

This section provides a simplified PATO scheduling problem, three fea-
sible solutions to the simplified problem, and computes the dissimilarity
(Eq. (3)) to compare the sample solutions to one another. Figure 3
depicts a simple route network with two aircraft. The aircraft, 1 and
2, are 100 nm and 95 nm from waypoint WP2 along their respective
flight routes, namely (WP0.1, WP1, WP2) and (WP0.2, WP1, WP2),
and have no alternative flight routes (i.e., the problem is fully routed [7]).
The flight routes merge at WP1, 50 nautical miles due north of WP2,
as shown in Figure 3. Table 1 presents three feasible solutions to the
problem stated in Section 2.1 subject only to constraints on the feasible
speed range and the required horizontal separation between aircraft:

1. 400 kts < v(®) < 500 kts
2. (z' —22)2 + (y' —y?)? > 72, where z(®,y(®) are coordinates in the

same horizontal plane as the route network and r is the required
horizontal separation distance.

10



Figure 3. A simple route network with two aircraft

The values of the pairwise dissimilarities (3) for the three sample
schedules are approximately:

d(Ul, 02) ~ 5.91 (8)
d(Ug, 03) ~ 3.58 (9)
d(oy,03) =~ 7.16 (10)

The dissimilarities (8), (9), (10) imply that the schedule pair (o1, 03)
is more dissimilar than is the pair (o9, 03). These results match the fol-
lowing intuition. Schedules o2 and o3 differ only by 25 kts along the
entire flight route of each aircraft (see Figures 4 and 5). Schedules oy
and o3 not only exhibit greater differences in speeds, but also prescribe
different orders of aircraft arrival at WP2 (see Figure 3). Changes in
aircraft arrival order indicate a significantly different schedule to the air
traffic control and to pilots, as separation standards may differ and pi-
lot visual acquisition of leading aircraft may be required. While aircraft
order is not considered in schedule dissimilarity (3), reordering in con-
gested terminal airspace would typically require large speed changes (or
rerouting).

11



speed, v!, kts

solution aircraft duration(s) speed(kts) path interval (nm)

550

500

450

400

o1 o 720 500 [=100, 0]
s 360 400 [—95, —55]
396 500 [—55, 0]
o a1 758 475 [=100, 0]
s 720 475 [—95, 0]
o3 o 800 450 [—100, 0]
s 760 450 [—95, 0]

Table 1. Sample solutions to example PATO scheduling problem

_ v(ol;l)

arc length coordinate, s, nm

Figure 4. Aircraft 1 speed advisory under each schedule.
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speed, v?, kts

8 - p(01:2)
..... U(UQQZ)
....... 1}(03;2)
o
O —
Y9}
o
B | e cccicicicicicicicoo
<
o
O —
<t
I I I I I I
-100 -80 -60 -40 -20 0

arc length coordinate, s, nm

Figure 5. Aircraft 2 speed advisory under each schedule.
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3.4 Schedule stability and robustness
3.4.1 Schedule stability to stochastic perturbations

The definition (3) of dissimilarity of an identically routed schedule pair
has the required capability to distinguish two schedules that, in opera-
tional intuition, substantially differ in the speed profiles. Dissimilarity
will be used in this section to define stability. As indicated above, in-
tuitively, a schedule will be thought stable at a given parameter value
p € P if by “small perturbations” to p one cannot with high probability
cause large changes (in the sense of the dissimilarity (3)) in the schedule.
Since this interpretation of stability is a weakened version of the notion
of continuity [5, section 4.4-6] of a function at a point, we first recall the
classical definition of continuity: a function f(z) of a real argument and
taking real values is said to be continuous at a point x = p if for every
positive € > 0 one can find a positive d. > 0 (the subscript indicates that
the choice of ¢ generally depends on the value of €) such that

If(p+ &) — f(p)] <e for all £ satisfying |¢| < J. (11)

The intuition here is that by keeping the perturbations £ to p “small
enough” (i.e., less than ¢, in magnitude), one guarantees that the per-
turbation will not cause the value of f to move farther away from f(p)
than distance e. This intuition connects to ATO by thinking of f as a
schedule: one prefers such schedules that if a perturbation to the pa-
rameter values is “small enough,” then the resulting schedule is “not too
dissimilar” from the original one.

The function f as defined above, however, does not model a schedule
and its parameters p successfully: neither a schedule nor a parameter is
a scalar. To address this issue, generalize by letting f take arguments
from a normed vector space [5, section 14-2.5] with norm || - || and take
values in a metric space [5, section 12.5-2] with metric d(-,-), one can
define continuity by generalizing condition (11) to

d(f(p+& f(p)) <e for all € satisfying ||€]| < de. (12)

Condition (12) of continuity would suit our goals completely if the values
of the perturbations £ to the parameter value vector p were deterministic.
Such determinism, however, is absent from ATO: to attain satisfactory
fidelity, one must make concessions. We make two, i) to model £ as a
random variable that takes values in the same parameter space P from
which p comes, and i) to relax the first inequality in (12) by allowing it
to hold only with some confidence (1 —r) (in the sense of the probability
measure Pr that governs £). With these concessions, one obtains a
generalization of (12) to

Pr[d(f(p+§,f(p)) < 6} >1—r for all £ satisfying ||¢|| < de. (13)

14



Finally, since ¢ is a random variable, inequality ||£|| < J. can be inter-
preted as an event in the probability space underlying &, so (13) can be
written as the conditional probability

Pr(d(f(p+&f(p) <e|llél <o) >1-r (14)

To tie the model to ATO, let d be the dissimilarity metric d defined
in (3), and let f be the schedule o. The result is the following definition:

Definition 3.2. A schedule o(p) is stable at parameter value p if for
every positive epsilon € and for every positive r < 1 there exists a positive
d¢ such that

Pr[d(a(p+€,a(p))<e‘]|£H<56] >1-—r (15)

3.4.2 Robustness of PATO

PATO can be seen to consist of two major components: compilation of
detailed schedules, and execution of those schedules. Thus, disruptions
to a PATO can be of two major types: perturbations to the input pa-
rameters of a schedule, and perturbations to the execution of a schedule.

Perturbations of the first type, as well as the stability of a schedule to
such perturbations, are defined in the preceding section. Those aspects of
PATO robustness corresponding to the perturbations of the second type
are less amenable to a mathematical characterization and depend on the
functional architecture of the PATO system. The definition of a schedule
in section 2.1 allows one to view a schedule as a control strategy for a
given control system. This view, in turn, helps pinpoint a clear meaning
of “an execution” of a schedule: an engineering system executes a control
strategy by receiving that strategy as an input signal and by responding
to this signal. In this, control-theoretic, framework, perturbations to an
execution can be viewed as perturbations (whether stochastic or not) to
the right-hand side of the state equations [5, section 11-8.1(a)], of the
general form

d a function of:
a(state of the system) = | the state, the control, and, [,  (16)
possibly, other parameters

of the control system in question.

It follows that, to obtain a precise and general definition of PATO
robustness, one must first assume some mapping that associates to each
given schedule some mechanism of schedule execution (MSE), such as a
plan of ATC clearance issuances or an automated system for reading the
control strategy and conveying it in some form to the parties or devices
responsible for the control of the aircraft. Assuming such a mapping, one
can make the determination whether the MSE corresponding to a given
schedule is “operationally feasible,” i.e. is capable of being carried out
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without violating PATO constraints (e.g., the required separation and
feasible speed ranges; see [2] for a detailed list of such constraints). With
the MSE and the capability to determine operational feasibility, one can
say that a given PATO is robust to the set Q of perturbations to the exe-
cution if the MSE* corresponding to a schedule ¢ remains operationally
feasible upon undergoing any perturbation ¢ € Q. Deeper research into
the characterization of MSEs and of schedule-to-MSE mappings is a topic
for future research and lies beyond the scope of this paper.

4 Numerical examples

4.1 An unstable schedule

In the example of section 3.3.1, let P be the set of all wind fields that are
collinear (but not necessarily co-directional) with northwest and have a
magnitude constant both in time and in space. Thus, a wind field is
completely determined by a scalar, p € P, positive if the wind blows
northwest. The parameter space P is, therefore, the real number line.
The schedule o7 given in that example corresponds to the parameter
value p = 0, i.e. o1 = 0(0). The perturbations £ to a given wind field
p come, again, from P and follow some probability distribution, whose
specific form will not be needed in this example. The norm of a per-
turbation £ € P will be simply the absolute value [£|. The perturbation
& will be taken positive if the wind is directed northwest, and negative
otherwise.

To show that o is not stable in the sense of definition 3.2, pick a
positive € smaller than the right-hand side of computation (7):

0 <e<bH47.24

It follows from Remark 3.1 and computation (7) that for every positive
¢, no matter how small, the resulting schedule o(§) will be dissimilar to
0(0) at least by amount 547.24. Consequently,

Ra(p);é,e = O,
i.e. condition (15) fails for every ¢ > 0.
4.2 A schedule stable in the presence of a wind perturba-
tion

Taking the route network, aircraft set, routing, and feasible airspeed
ranges as in the example of section 3.3.1, we now modify the initial state

“The wording “the MSE” in the latter sentence assumes that each schedule is
mapped to exactly one MSE. This need not be the case: a schedule may be mapped
to a set M of MSEs. In this case, the latter definition of robustness can be modified
to say that at least one MSE in M remains operationally feasible upon undergoing
any perturbation ¢ € Q.
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Figure 6. An example of a stable schedule o(0) (solid diagonal ray from
so) for zero wind. If a perturbation which is a constant wind northwest
or southeast is sufficiently small, then the new schedule is sufficiently
close to the one shown.

sp so that the shaded disc, corresponding to states with lost separation,
lies above the diagonal through sg. This situation, with the cone of
states reachable from sp in the absence of winds, is shown in Figure 6.
Here we restrict attention to those schedules that assign to each aircraft
« a constant airspeed v(®) (allowing, however, the two aircraft to go at
different speeds). On this set of schedules, we introduce the objective
function (to be maximized) defined in terms of ground speeds:
Vgs + Vg

Thus, the objective is to move the aircraft along their routes as quickly
as possible, and at speeds whose values are as close as possible. The
objective function attains a maximum in the corner (V™* V/™aX) of the
square Vmin < (@) < ymax o — 1 2 30 an optimal schedule o(0) for
zero wind is

’U;S = fugs = pymex
With the parameter space P as in section 4.1 (i.e., uniform and constant
wind fields collinear with, or opposite to, the northwest direction), each
perturbation £ € P results in the unique optimal schedule

o(0+8&): vy, =V"—¢sin(n/d), vo, =V™ + Esin(n/4),

which is executable for sufficiently small ||. The dissimilarity between
0(0) and a generic o(0 + &), however, is computed in terms of the air-
speeds, and in this case comes out to

0 0
d(c(0),0(0+8)) = \//_49[Vmax — ymax]2 ggl 4 /_50[Vmax — Ymax]2 g2 =
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It follows that R,).5. = 1 for all sufficiently small § > 0, and conse-
quently schedule ¢(0) is stable (at parameter value p = 0).

4.3 A schedule stable in the presence of a control execu-
tion timing perturbation

Consider the same route network, aircraft set A = {1, 2}, and routing as
in section 4.2. Stability of a schedule will be shown here qualitatively,
and there will be no need for specific values of V™" V™aX and sy. The
only assumption here is that the initial state sg, as shown in Figure 6, is
such that having the two aircraft go at equal ground speeds will lead to
a loss of separation. Let s(EX/T5@) be the arc length coordinate at which
the flight path of aircraft o ends. In Figure 7, the shaded disc represents

trajectory |corresponding to schedule o (0 + &)

Figure 7. An example of a stable schedule o(0) (solid diagonal ray from
so) for zero wind. If a perturbation which is a constant wind northwest
or southeast is sufficiently small, then the new schedule is sufficiently
close to the one shown.

the set of all states in which separation is lost, and the intersection of
the two dashed lines

81 — SEXIT;l’ 82 — SEXIT;Z (17)

is the state in which both aircraft have traversed their paths completely.

The ground speed advisories (U;S, vgs) admitted for use here are the

ones that i) are continuous and piecewise linear, and 4i) reach the union
of the lines (17) at a 45-degree angle to both lines (this means that at the
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instant when a first aircraft reaches the end of its path, the two aircraft
are going at the same ground speed). Recall that each speed advisory,

(U;S(t),vgs(t)), gives rise to a trajectory (s'(t),s2(t)) in the arc length

coordinate space; this trajectory is the solution to the ODE system

(@)
% = v!g‘;‘),a ceA

with the initial condition
(51(0), 5*(0)) = s0
The objective function used here is

(percentage of the entire trajectory length parallel to the diagonal)

(#cusps in a speed advisory)
(18)

The parameter here is control latency (see [2, appendix A.2]). To
capture this, the parameter space is taken to be the nonnegative ray of
the real number line: P = {p : p > 0}, and the norm || - || will be the
absolute value |- |. The parameter values p € P are to be measured
in the units of time. Assume that the perturbations £ € P obey some
probability density function f(£) which is continuous on all of P.

With control latency p = 0, the schedule o(0) gives a speed advisory
(Ugs(o);1 (s1) g0 (52)) that maximizes (18) and leads to the trajectory
shown in Figure 7 as a solid polygonal curve. If the initial instantaneous
ground speeds of the two aircraft are as with p = 0, a control latency &
will delay execution of the same advisory, resulting in a schedule o(0+¢)
with a new speed advisory, <v§§0+§);1 (sh) ,v;’§°+9?2 (82)). The trajectory
(shown in Figure 7 as a dotted polygonal curve) corresponding to the lat-
ter advisory reaches its diagonal segment later than does the trajectory
for (0).

Simple geometric considerations show that

lim d(c(0),0(0+£)) =0

£—0t
Thus, for a given € > 0, the continuity of f(§) implies

lim Prld(o(p),o(p+¢)) <€l <d] =1,

£—0t

which, in turn, implies condition (15).

5 Dissimilarity generalized to non-identically routed
schedules

We indicate here one way of generalizing the dissimilarity definition (3) to
include the case when the schedule pair (o1, 02) is not identically routed.
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First, note that the integration variable s in (3) can be normalized by

the path length
L(a) _ S(EXIT;Q) _ S(ENT;a);

i.e., introducing the new variable
~ s — S(ENT;a)
§=——F",

L(@)

one can rewrite the integral in (3) thus:
1 2
/ {U(UIZC“)(L(O‘)S') _ U(Gz;a)(L(a)g)} ds (19)
0

Suppose now that the two schedules assign to aircraft a two different
paths, 7(@1:9) 7(02:@) of regpective lengths Lo1:9) and L@2:9) The ar-
gument of each of v(@1®) y(@2%) ip (19) can now be normalized by the
corresponding path length, which gives the following generalization:

1 2
/ [U(Ul;a) (L(01§C¥)§) — U(UQ?Q) (L(Ug;a)g)} ds (20)
0

Finally, if there is a metric® p defined on the set of all paths in the given
airspace, definition (3) can be generalized to include the case when the
pair o1, 09 is not identically routed as follows:

d(al,ag) =

\/Za {p(rlere, mloze)2 4 i [plerio)(Llore)5) — ploze) (L)) ds |

(21)
Notice that if the schedule pair o1, 02 is identically routed, then

L1 = [(029) and p(r(@19) 720y = for all a,

and, consequently, (21) reduces to (3).

6 Conclusions

The above analysis helps make clear the distinction that, in the context of
PATO, stability is a property of a parameter-dependent schedule, while
robustness is a property of the execution of such a schedule. The in-
tended use of a schedule dissimilarity metric, such as we have proposed
above, is the evaluation of PATO robustness to operational uncertain-
ties. The suitability of schedule dissimilarity (3) for modeling PATO
system response to perturbations has not been established. Further-
more, models of perturbations to the parameters p € P are necessary to

5In the sense of [5, definition 12-5.2].
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utilize dissimilarity in the operational context; the stochasticity of the
input parameters may be difficult to test or false altogether. If schedule
dissimilarity is suitable for PATO evaluation, and sufficient models of
perturbations to the input parameters can be developed, a great deal
of research remains before robust PATO can be realized. Considering
the purposes for a quantifiable measure of schedule robustness stated
in Section 3, either: an appropriate cost function for PATO schedule
optimization must be developed, or the acceptable level of schedule sen-
sitivity must be determined. Lastly, how such information might be em-
ployed operationally to increase PATO robustness must be investigated.
While the amount of work remaining to realize the primary objective of
this thread of research (robust PATO) is significant, this paper provides
an important starting point for rigorous assessment of PATO scheduling
methods in the presence of operational uncertainties.
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